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Abstract

In this paper we prove a result that is fundamental to the generalization prop-
erties of Vapnik’s support vector machines and other large margin classifiers. In
particular, we prove that the minimum margin over all dichotomies of £k < n+1
points inside a unit ball in R™ is maximized when the points form a regular
simplex on a unit sphere. We also provide an alternative proof directly in the
framework of level fat shattering.
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1. Introduction

Bounds on the generalization error for classifiers that minimize empirical error
are available as a function of the number of training samples and the complexity
of the set of functions from which the classifier was drawn. One of the most
widely used complexity measures is the Vapnik-Chervonenkis (VC) dimension,
which for linear classifiers is n+ 1, where n is the dimension of the ambient space.
VC generalization bounds support the conventional wisdom that the best way
to control a classifier’s complexity is to control its size. But this view does not
account for the observation that the generalization of a fixed size classifier can
often be improved by maximizing the amount by which it separates the data.
One of the first such results is due to Vapnik who showed that the VC dimen-
sion of linear classifiers restricted to a particular data set can be bounded in
terms of their margin, which measures how much they separate the data. This
result is formalized by Theorem 1 below, whose proof is the main concern of
this paper. Although Vapnik’s theorem did not immediately yield generalization
results(because of its data dependent nature, see Shawe-Taylor et. al. [10]) it
suggested that the generalization of a large margin classifier could be controlled
independent of its size (n), and provided a key motivation for Vapnik’s Support
Vector Machines [12]. More recently, Bartlett [1] and Shaw-Taylor, et. al. [10]
have developed rigorous generalization bounds in terms of the margin by us-
ing a complexity measure called the fat-shattering dimension, which we discuss
briefly in section 4. These bounds help explain the success of a number of re-
cent approaches that are aimed at maximizing the margin, e.g. Support Vector
Machines [12], Boosting [4], and Direct Optimization of Margin (DOOM) [6].

Definition 1 Let X = R"™ be the n-dimensional Euclidean space, and let H
be the family of linear classifiers c(x) = sign(h(z)) where h(z) is an affine
function. Further, let H, be the set of linear classifiers that dichotomize X using
hyperplanes of thickness p. More formally, define H, to be classifiers of the form

¢p(@) = cla), D(xlh=0)>%
where D(z|h = 0) is the distance from x to the hyperplane h = 0. (Note that
cy(z) is not defined for {x : D(z|h = 0) < §}.) The margin of classifiers in H,
is defined to be p. Finally, let H,+ be the set of linear classifiers with thickness
greater than or equal to p, that is H,+ = Ug>,Hy.

The SVM method produces classifiers of maximal margin that correctly classify
a fixed size training set. The following theorem, due to Vapnik [11, 12], provides
the essential link between margin and realized classifier class complexity for
SVMs.

Theorem 1 (Vapnik, 1982) Let X, = {1, %2, ...,x} C X denote a set of points
contained within a sphere of radius r. The VC dimension of H,+ restricted to

X, satisfies 5

4
VCdim(H ) < min([—

p2 -|7n)+1
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Actually, it is Burges [3] that noted that [ |= ”smallest integer greater than
or equal to” needs to be used in the statement of this theorem instead of the
more often quoted | |="largest integer less then or equal to”, which is incorrect,
but asymptotically sharper. To prove this result it is sufficient to determine the
largest set X, that can be shattered by the set of hyperplanes of thickness p. The
upper bound is obviously n 4+ 1 (the number shattered when p = 0). Existing
proofs of the (potentially) tighter bound, [(2r/p)?]+1 rely on the almost obvious
assumption that the minimum margin over all dichotomies of k£ < n+1 points in
R™ can be maximized by placing these points on a regular simplex whose vertices
lie on the surface of the sphere( See [11], page 324 or [12], page 353). Although
this assumption has intuitive appeal, it has not been proven correct(cf. Burges
3)).

The purpose of this paper is to provide such a proof. Indeed we provide
two proofs. The first is directly in terms of the margin and the second is in
the framework of level fat shattering. Shawe-Taylor et. al. [10] observed the
connection between level fat shattering and margin. Indeed, Shawe-Taylor et.
al. [10] prove a bound in the level fat shattering formulation as a corollary to
Vapnik’s Theorem. On the other hand, Gurvits [5] provides a bound in the
level fat shattering formulation which has a weaker bound than Vapnik’s as a
corollary. Bartlett and Shawe-Taylor [2] use Gurvits’ idea to prove bounds on
the level fat shattering dimension of homogeneous linear classifiers, but these
bounds do not directly apply here because of the homogeneity assumption. For
our second proof, we use a modification of the technique used by Gurvits [5] and
Bartlett and Shawe-Taylor [2].

We begin by establishing the following lemma.

2. Preparation

Let ¢ = (%1, %2, ..., x;) denote a vector of k points in R™. Define r(z) to be the
radius of the smallest ball in R” that contains all k£ points.

Lemma 1 Suppose that r(x) < 1. Then in the center of mass frame( translating
the data so that ), x; =0)
> lwil? <k

Proof. Let E denote averaging over the data index i. r(x) < 1 implies that
x; = z + y; where |y;| < 1 for some z. Since the variance is translation invariant

E(X -EX))=E(Y -EY)")=E(Y]) -BEY) <E(Y]) <1

and the proof is finished.
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3. Statement and Proof of the Theorem

We now state and prove the main theorem.

Theorem 2 Let © = (x1,2,...,x) denote a vector of k points in R™. Define
r(z) to be the radius of the smallest ball in R™ that contains all k points. Let s
denote a proper subset of the k integers {1,2,...k — 1,k} and let x5 denote the
set of points corresponding to the subset s. Let p(zs) be the distance between the
convez hull of s and the convex hull of its complement x 4.

Then the value

max min p(z,)?
z:r(z)<r s

is obtained when x is a regular simplex with vertices on the sphere of radius r.

Proof. We first note that since k points span at most a k — 1 dimensional affine
subspace, we can restrict to n = k—1. It is also clear that max,,.(,)<, min p(zs)?
is quadratic in r, so we need to prove that the value

: 2
max min p(xr
z:r(z)<1l § ( S)

is obtained when z is a regular simplex with vertices on the unit sphere. Define

h(k) = max min p(z4)?

where z is constrained so that r(z) < 1 and s varies over all the proper subsets
of the k points. This is a max, min, game with payoff function p(z,)?, lower
value h(k) = max, min, p(z4)?, and upper value v(k) = ming max, p(zs) = 1.
In general, h(k) < v(k).

Our plan of attack is as follows. We extend to a game with payoff func-
tion f(z,y) with the same lower value. Then we explicitly construct a saddle
point (xg,yo) to this extended game with zg a regular k-simplex, where a saddle
point (zo,yo) satisfies f(z,y0) < f(zo,y0) < f(zo,y) for all  and y. By von
Neumann’s Theorem (von Neumann and Morgenstern [8] pg 95.),

h(k) = f(zo, o).

This proves the theorem.
To make z; a vector we define s = (4, %4y, ...,xi‘sl), where i; are all in
s and they are monotonic iy < iz < ... < i|s. Observe that p(z,)? itself is a

minimization
S s 2
> pizi— Y ¢zl
i€s j€Ese

2 _ .
plea)” = it

where p® are vectors of length |s|, with p§ > 0,i = 1,..,|s| and ), , s P =1
and likewise for ¢° except that it is of length |s¢| = k& — |s|. Therefore we first
rewrite the max-min game as a max-min game with payoff function F(z,z) =
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| D ics PiTi = X jese €5 “x;]? where z = (s,p*,¢*). We extend again by observing

that
min |szwz qua:ﬂ = mln Z)\ |szwz Zq;a:j|2,

(s:p%50%) " 25 jese i€s jese

where A varies over all probability distributions over the set of proper subsets
and where p = [[ {p°} and ¢ = [[,{¢"} are the product variables. This forms a
new min-max game with the same lower value as the original with payoff function

fl@,y) =3, Al ZiESpf:ri - EjESC q;-:rj|2 where y = (A, p,q). Consequently the
chain of extensions can be written

h(k) = max min p(z,)* = max min F(z, z) = max min f(z,y)
z s z z z y

Denote [ ]| = | |="the largest integer less then or equal to” operator.
Lemma 2 The function
=2 02 pimi= ) gl
i€s JjEse

has a saddle point at (t,y*) where t is the regular simplex on the unit sphere
and y* = (1321, P, Q) where 115 is the probability whose mass lies uniformly
distributed over the set of subsets s such that |s| = [£] and P* = s |(1, 1,..,1,1)
and Q° = = |‘(11 ,1,1).

Proof. Recall the definition of a saddle at (¢,y*):

fla,y") < fty") < fty)

for all z and y. We prove these inequalities one at a time.

Proof of f(t,y") < f(t,y):

The simplex is special in that

> o5t =Y @t =) )+ > (@)

i€s j€Es* i€Es j€Es*

which has its minimum value m at p* = P and ¢° = Q°.
Consequently,

ft, (A P,Q)) < f(t, (A, p,q))-

Since the function m is constant on the strata of subsets of size

E
£t P.Q) z i N 1
—1 Is[(k T E— 1=k =)
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Since m is minimal at |s| = [4], f(¢, (A, P,Q) is then minimized by
placing the mass of A entirely on |s| = [£]. Consequently,
f@ (pyzp, £,Q)) < f(5 (X, P,Q)),
and therefore
ft,y™) < f(ty).
Proof of f(z,y*) < f(t,y*):

By definition

f(z,y") = i

1 2
> mr e m et

([k/2]) s:|s|=[%] i€se

and since the constraint is translation invariant we translate to the center of
mass so that 0 = ) ;. Consequently f(z,y*) is a positive multiple of

2
> 1l
si|s|=[§] i€s
Reverse the order of summation and expand so that
DI SRTES DD D
sis|=[5] 1€s b si|sl=[5]{i,4}Cs
The interior sum Zs;m:[g] x; - T is x; - x; times the number of subsets

which contain both ¢ and j. When i = j it is ([ ') but when i # j, ( i)

k11

Consequently,
> > fi‘%‘Z( >Z|z|2 ( >sz z;
4,J s:|s|=[%],{i,j}Cs i#]

= () - (o ))ZW( )Zmz o,

but since 0 = > x; and ([ ) > ([ iy ?,) the second term vanishes and we
2
are left with a positive multiple of

> lail
i
From Lemma 1, we know that

Yol <k

i
S It =
i

[l y®) < f(ty")-

and for the simplex ¢

Therefore,
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The proof of Lemma 2 and therefore of Theorem 2 is finished.

4. Level fat shattering

As mentioned in the introduction, Theorem 1 assumed the bounds between the
number of data points and the margin for the regular simplex provided such
bounds in general. Explicit calculation on a regular unit simplex gives

2
k-1

p < k even

2k
T
and the bounds stated in Theorem 1 represent implied inversions to bounds of
k in terms of p. Shawe-Taylor et.al. [10] discuss why Vapnik’s theorem does not
provide bounds on generalization error, even though it did provide motivation
for Support Vector Machines and other large margin classifiers. They resolve
this issue by utilizing the level fat shattering formalism. In particular they show
that if the data is -y level fat shattered then each partition can be achieved by a
hyperplane with margin p > 27v. Consequently, Theorem 2 applies with p = 2.
Bartlett and Shawe-Taylor [2] use Gurvits’ idea to prove bounds on the level fat
shattering dimension of homogeneous linear classifiers, but these bounds do not
directly apply here because of the homogeneity assumption. We now define fat
shattering and level fat shattering and prove the equivalent to Theorem 2 using
the level fat shattering formalism directly.

—

k odd,

Definition 2 k points are v fat shattered by the affine linear functions if there
is a a;,1 = 1,.., k such that for each partition b, there is a choice of unit vector
wp and a ¢p so that

wp T+ dp > 0y + 7, b =1
wp T+ oy <y — 1, by = —1.

In level fat shattering, we require a; = « to be constant. Then the constant
a can be absorbed in ¢, so we can set it to zero in the formulation as follows:

wp - Ti + >, bi=1

wp - T + Py < —, b = —1.

which can be written in the concise form

bi(wp - i + ¢p) > 7.
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Theorem 3 Suppose that k points are contained in a ball of radius 1 (r(z) <1)
and are 7y level fat shattered by the affine linear functions. Then

1
k-1

v < k even

k 1
< -
R Y
Because these bounds are those of a regular simplex, application of the re-
sult of Shawe-Taylor [10] sending 2y — p shows that Theorem 3 provides an
alternative proof of Theorem 2.

k odd.

Proof. First consider k even. For a subset Sy of size |Sy| = |2i|, we have ). b; =0,
so it follows that

wp - Y bixi > 7S],
i

which by the Cauchy-Schwartz inequality implies

1> biwi| > 7S]
i
In Bartlett and Shawe-Taylor [2] the next step is to average | >, b;z;|* over all
b but we instead average over all b with |Sy| = |2i| By reversing the order of
summation

E(| szmz|2) = ZE(bzbj)xz * Ty,
i i,7

we apply standard combinatorial arguments to determine the coefficients of x; -
;. Since b;b; = 1 when i = j, the constant in front of >, 7 is one. For i # j

kf
E(bibj) =2 2 L —
Then

E(|Zbi$i|2) =) @i - k—il > wi-w

i i#j

LN S RN o
i, i 2

k
=

1
Consequently, using the center of mass frame, Lemma 1 implies that

k‘2
2
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IE|
2

k,2
2

Combining this with the previous bound |}, bjz;| > v|S| gives

so that for at least one subset with |Sp| =

completing the proof when k is even.

Now consider k odd. Let b denote a partition such that |Sy| = L@J + 1.
Denote r = |Sy|. Then r = [£] 4+ 1 and k = 2r — 1. We wish to proceed as in the
even case above but must modify the procedure so that summing the inequality

bi(ws - Ti + ¢p) >y
cancels the unknown ¢;,. We accomplish this by defining the weights

1
Lb);=- b =1
B)i = -

1
L(b); = b; = —1.
(®) r—1
Then ) ,b;L(b); = 0 and ), L(b); = 2. Since L is positive we multiply the
shattering equations by L(b); and sum to obtain

wp - Y biL(b)iwi > 2,

which by the Cauchy-Schwartz inequality implies that

i
We now compute an upper bound of

E(| Z b L(b)si|*) = Z E(bibj L(b);L(b);)w; - ;

where E denotes averaging over all partitions b such that |S,| = L%J + 1. We
first consider the case when i = j. When i € S;, L(b); = L and L(b); = —5
otherwise. Consequently,

TLQ (2::12) + (7‘—11)2 (2T;2)

(!

E(bib; L(b);L(b);) =

and a little computation yields

E(bib; L(b);L(b);) = "= 1)
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Now consider when i # j. Then

TLZ) {Z)J} g Sb
bibL(b);L(b); = 7 1ii} C 5§
— gy, (1€ S5 €SE) or (i € S5,j € Sy).

Consequently

Lz 2r—3 + 2r—3\ _ 2 2r—3
E(blb]L(b)ZL(b)]) _r (r 2) (r— 1) ( r ) r(r—l)(r—l)

)

and a little computation yields

1

B(bibs LML ()) = =500

Consequently,

|ZbL )izi|?) Z 2 le z;

i#]

—1

2r:—12z‘” 7“—1 le T
o — 1

27"77:—122 7 = 2|Zml|2

which is bounded by
|2r — 12
2r(r —1)2
by moving to the center of mass frame, applying Lemma 1, and recalling that
k=2r—1.
Consequently there must exist such a partition b so that

2r — 1)?
bL 12 |7
|Z Jiil” < = 2r(r — 1)2

but since
we obtain
|2r — 112 k2
T -1 k—12(k+1)
or

<
T=%

and the proof is finished.
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5. Epilogue

Shawe-Taylor et.al. [10] have shown that a map from maximizing the margin
over all labelings of the data to finding the greatest v so that the data is vy level
fat shattered is achieved by p — 2. We have proven Vapnik’s theorem both
in the original margin formulation and in the equivalent level fat shattering
formulation. The relationship between these proofs is unclear. In the first proof
there was no need to know the value of the margin for the regular simplex while
in the second there was. We note that the choice of L(b) used in the second
proof can also be seen in the first technique. We suspect that this choice can be
justified by formulating the maximum level fat shattering problem as a convex
programming problem, extending this problem to a Lagrangian which has a
saddle point at the solution and then utilizing the saddle point property of the
solution in much the same way as we did in the first proof technique. It would
be useful to better understand how the transformation of optimization problems
from margin to «y level fat shattering induces transformations of proof techniques.
We also suspect that the regular simplex is the only configuration that achieves
equality in the inequalities of Theorem 3.

Acknowledgments

We would like to express our thanks to the referees for many helpful suggestions,
including the encouragement to complete the proof for the level fat shattering
framework. Thanks also to the referee who informed us of an elementary proof
of Lemma 1, which we have subsequently adopted.

References

1. Bartlett, P. L., The sample complexity of pattern classification with neural networks: The
size o f the weights is more important than the size of the network, IEEE Transactions
on Information Theory 44(1998), 525-536.

2. Bartlett, P.L., Shawe-Taylor, J., Generalization performance of support vector machines
and other pattern classifiers, Advances in Kernel Methods: Support Vector Learning,pp
43-54, Scholkopf, B., Burges, C. J. C., and Smola, A. J., Eds., MIT Press, 1999.

3. Burges, C. J. C., A tutorial on Support Vector Machines for pattern recognition, Data
Mining and Knowledge Discovery 2(1998), 121-167.

4. Freund, Y., and Schapire, R. E., A decision-theoretic generalization of on-line learning and
an application to boosting. In Computational Learning Theory: Second European Con-
ference, EuroCOLT ‘95, pp. 23-37., Springer-Verlag, 1995. See also Journal of Computer
and System Science, 55(1) (1997), 119-139.

5. Gurvits, L., A note on the scale sensitive dimension of linear bounded functionals in
Banach spaces, Proceedings of Algorithm Learning Theory, ALT-97(1997).

6. Mason, L., Bartlett, P.L., and Baxter, J., Direct optimization of margins improves gener-
alization in combined classifiers, to appear in Advances in Neural Information Processing
Systems 12, MIT Press, Cambridge, MA (1999).

7. von Neumann, J., Zur Theorie der Gesellsaftspiele, Mathematische Annalen
100(1928),295-320.

8. von Neumann, J., and O. Morgenstern, Theory of Games and Economic Behavior, Prince-
ton University Press, Princeton, 1944.



12 Don Hush and Clint Scovel

9. Polak, E., Optimization: Algorithms and Consistent Approzimations, Springer-Verlag,
New York, 1997.

10. Shawe-Taylor, J., Bartlett, P.L., Williamson, R. C., and M. Anthony, Structural Risk
Minimization over Data-Dependent Hierarchies, NeuroCOLT Technical Report NC-TR-
96-053(1996).

11. Vapnik, V., Estimation of Dependencies Based on Empirical Data, translated by S. Kotz,
Springer-Verlag, New York, 1982.

12. Vapnik, V. N., Statistical Learning Theory, John Wiley and Sons, Inc., New York, 1998.

This article was processed using the IATEX macro package with JNS style



